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SUMMARY 

The right half-space f~ is bisected by a high-diffusivity planar sheet I" which lies along the x-axis. A sudden 
increase in the potential on ~f~ (y-axis) causes longitudinal diffusion along P coupled with transverse diffu- 
sion from P into ~2. Restricting to the case of large diffusivity ratio, P to ~2, it is demonstrated that the prob- 
lem possesses a sequence of three distinct time domains in which serf-similar solutions become asymptotically 
valid. The early, intermediate, and late solutions are each functions of only two independent variables; they 
are universally valid for all parameter values; and they are easily computed and readily applied. Transitions 
between asymptotics are described by expansions in time, the perturbations being regular in the early-inter- 
mediate period but singular in the intermediate-late period. The considered problem is a linear example which 
affords the opportunity for comparison with Fourier-Laplace analysis, and has application to thermal or 
electric conduction, diffusion mass transfer, and Darcy-flow of fluid in a fractured or layered porous me- 
dium. Methodology and qualitative observations are applicable to more complex nonlinear problems of the 
same class. 

1. Int roduct ion 

The diffusion process is o f  fundamental  importance in many branches of  engineering science. 

In certain applications there may be a preferred, high-diffusivity path P which extends from the 

boundary into the interior o f  a region ~2. Examples include the conduction of  heat or electricity 

along a metallic path F which is surrounded by  a less conductive ~2, and the Darcy-flow of  a 

fluid in a porous layer or a fracture P which is surrounded by a less permeable ~2, as well as 

analogous problems of  diffusive mass transfer due to a saturation gradient or a concentration gra- 

dient. The transient coupling between longitudinal diffusion along P and transverse diffusion 

from F into ~2 is the topic addressed herein. 

Previous analytical and numerical work is found in a number of  applications. For  a study of  

grain-boundary diffusion Whipple [1 ] uses Fourier-Laplace transforms to solve the prototypic  

problem of  Figure 1 in which a half-space ~2, bisected by  a planar slab F, is subjected to a sudden 

increase in potential  at the boundary A. Jaeger [2] applies Bessel series to the corresponding 

axisymmetric problem of  heat flow along a cylindrical rod P imbedded in a semi-infinite solid. 

Fluid flow in fractured or  layered porous media [3] has been studied analytically and humeri- 
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Figure 1. Isopotentials for transient diffusion along a high-diffusivity plane I" bisecting a half-space I2. 

cally, both for planar geometry and for an axisymmetric configuration in which P is a horizontal 
circular disc centered about a well bore. There are also some approximate treatments in which 
the transverse flow from F into ~2 is presumed to locally obey a simplified rule such as inverse 
proportionality to the square root of time for a medium which is semi-inf'mite in the transverse 
direction [4], or direct proportionality to a mean potential difference (as in the convective fin) 
for the transversely bounded case [5, 6]. In some circumstances it may even be reasonable to 

entirely neglect the transverse flow. 

The prototypic problem of Figure 1 is reconsidered here under the supposition that the dif- 
fusivity ratio M, between ~2 and P, is small. It is demonstrated that the problem then possesses 
a sequence of  three distinct time domains in which self-similar solutions become asymptotically 

valid. At early times longitudinal diffusion on P is nearly undiminished by transverse losses into 
~2. At intermediate times the transverse losses from F are a dominant consideration, but the 
capacitance on P becomes negligible. The transition from early to intermediate times is repre- 
sented by a regular coordinate expansion in an early time variable. Throughout the early- 
intermediate period the diffusion in ~2 occurs primarily in the transverse direction and remains 

confined to a thin layer along F. At later times, however, longitudinal diffusion in ~2 becomes 

globally dominant, even to the extent that the preferred path along P is no longer in evidence. 

The transition from intermediate to late times is accomplished by a singular coordinate expan- 
sion in a late time variable. 

The present asymptotic analysis has several advantages over previous analytical and numerical 
studies. 

1. A sequence of  three asymptotic solutions is presented in a simple, easily-applied form 
which is universally valid for all parameter values so long as the diffusivity ratio M is small. 

2. Physical insight is gained through identification of the particular mechanisms which are 
dominant during different time periods. 
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3. Numerical computation is greatly simplified because the self-similar asymptotics are each 
functions of only two independent variables, rather than three (x, y, t). The self-similar 

coordinates freeze the spatial growth of the solution, so there is no need to expand the 
computational domain as time increases. 

4. Mathematical aspects of the problem become clearer, particularly regarding the boundary 
layers along P and A and the proper formulation of a reduced outer problem. 

5. Perturbation expansions need not be constructed, but they can be used to calculate 

deviations from the self-similar asymptotics and to explain the transition behavior. 
The considered problem is a linear example which affords the opportunity for verification by 

comparison with a Fourier-Laplace solution. The same asymptotic analysis can be used to sim- 
plify the more complex nonlinear problems of  the same general class. 

2. Formulation 

Consider the geometry shown in Figure 2 where the right half-space is bisected by a semi-inFinite 

slab of thickness 2b which lies along the x-axis. In view of symmetry, attention is restricted to 

the first quadrant ~2 and the adjacent half-slab F. Thermal conductivity, diffusivity, density and 
heat capacity are denoted as k, a, p and c; with subscripts referring to I" or ~2. The problem 
consists in f'mding the transient response to a step increase in temperature along the front face 
A, given that a r >> a a  and that the initial temperature is uniform. 

The temperature distribution in S2 satisfies the conduction equation [7] 

r t  = ~ a ( r x x  + ryy) (1) 

and when a a  is replaced by at ,  the same equation applies in F. In the absence of contact resis- 
tance, there can be no jumps in temperature or heat flux at the interface 

[TI= 0 and [kTyl = 0 on y =b.  (2) 

Now the slab is supposed to be thin and a relatively good conductor, so the temperature is near- 
ly uniform over its cross section. Using the fact that T is an even function of y ,  but retaining 

only quadratic terms, the partial differential equation in P is combined with the interfacial con- 
ditions to get [1,7] 

Tt=c~v T x x + ~ r  -b Ty +0 on y = b + .  
\~F I 

(3) 

This result replaces the symmetry condition ony  = 0. It serves as a shifted boundary condition 
to be satisfied by the temperature in g2, reducing the domain of integration to ~2 alone. Here- 
after the symbol F is used to designate the lower boundary of ~2 (y = b+), with the understanding 
that T(x,b,t) adequately describes the temperature variation along F. It only remains to specify 
the initial and boundary data 
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T(x,y,O)=To, T(Oy,t) = T1 (4) 

which describes the instantaneous temperature change on A. 
Standard arguments suggest the following system of dimensionless variables 

T-To 
T * ( x * , y * , t * )  = T1 - To  ' 

x y - b  [ar~% 
= - b  ' Y *  = -b l ' 

t * -  
ar t  

b 2 • 

(5) 

The time scaling reflects the fact that P is the dominant path of the disturbance, and the un- 
equal length scaling of x and y is appropriate because the longitudinal advance along P (=v~r )  
is rapid compared to the transverse advance into ~2(c~x/~a). Restating the problem in nor- 
malized variables, 

T*t.  = T * y . y .  + MT*x*x* in ~2, 

T*t.  =x /~  T*y .  + T * x . x .  on F, (6) 

T*(x*,y*,O) = O, T*(O,y*,t*) = 1. 

Thus, there are two dimensionless parameters which characterize the system, the diffusivity 
ratio 

ad 
M = ~ (7) 

aF 

and the thermal activity ratio 

R = \ k r ] \ a a  - (kpc)r (8) 

Both are familiar in dual medium problems. 
The present method of solution requires that M be small. Under this restriction alone it is 

found that the early behavior depends mainly on R,  that the late behavior depends mainly on 
the product Mx/-R, and that all dependence on these parameters can be accounted for implicitly 
by appropriate rescaling of the independent variables. 

3. Early self-similar asymptote 

At very early times the thermal disturbance travels forward along P, undiminished by sideward 
losses. The temperature rise in ~2 is initially confined to a pair of boundary-layer regions: the 
A-layer along x = 0 in which Txx >2> Tyy and the P-layer along y = 0 in which Tyy >2> Txx. 
The dominant behavior is well represented by an outer solution which ignores the A-layer. 

A similarity transformation which captures the early behavior is 

Journal of Eng~neering Math., Vol. 14 (1980)263-282 



Transient two-dimensional diffusion 267 

O(~,r~,~b) = T*(x*,y*,t*), 

X* y* 
~-  X/-~-g, H - x / t . ,  (~=Rt*. 

(9) 

Since ~ = ~(x*,t*), 77 = 1?(v*.t*), and ~b = (~(t*), the time derivatives transform as 

T*t. = O~t. + Or~rlt* + O ~(~t. (10) 

Thus, the PDE's become somewhat expanded when written in the similarity variables. 

0~ + ~ O~ = ¢0 4, - x /~O,  on F, 
(11) 

Onn +--~O n+ 0~ =¢0¢ - M 0 ~  in~2, 

0(0,rL¢) = 1, 0(oo,r/,~b) = 0. (12) 

The early similarity solution must satisfy this system in the limit as ~ ~ 0. 
The usual boundary-layer arguments [8] suggest that the A-layer thickness is of order x / ~  

(in units of ~) throughout the early time period. We therefore seek an outer solution under the 
simplification that M -~ 0 but with the penalty that the inner boundary condition 0(0,r/,~b) = 1 
must be abandoned everywhere along A except at the origin. This inability to satisfy a bound- 
ary condition is typically encountered in singular problems where a small parameter (M) multi- 
plies the highest derivative (0~)  in the direction normal to the boundary (A). However, the 

present case is somewhat unusual in that 0 ~  persists in the PDE (boundary condition) along 
I', even as M ~ 0, allowing the following degenerate retention 

0(0,0,¢) = 1 (13) 

of the otherwise lost boundary condition. 

The early similarity solution 0o(~,rT) = 0(~,~,0) is expressed as a function of a single indepen- 
dent variable, s = ~ + 77. Letting 0o(~,r/) = Oo(s), the partial differential equations applicable in 
~2 and on I" can both be written as 

d20o s dOo 
ds 2 + 2 ds -0 ,  (14) 

and all of the outer boundary conditions are satisfied provided that 0o has the boundary values 

0(0)= 1, 0 ( ~ ) = 0 .  (15) 

The solution is therefore the complementary error function, 0o = erfc(s/2). As seen in Figure 2, 
the isotherms are parallel lines which intersect the G-axis at a rr/4-angle. On I" where s = ~, the 
solution describes transient, longitudinal conduction, undiminished by sideward losses. Similar- 
ly, one-dimensional, transverse conduction occurs parallel to the bounding face A on which 
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= ~1. Energy travels longitudinally along F and then transversely into ~2, with one-dimensionali- 
ty in each. 

4. Early-intermediate expansion 

As the disturbance spans a growing length of F, the lateral loss-area increases. Transverse dif- 
fusion into the F-layer progressively depletes the longitudinal energy flow, reducing the penetra- 
tion rate on F. The resulting early-intermediate evolution is described by a regular coordinate 
expansion in the time variable ¢ = Rt*  

K 
0(~,~,¢)= 2; ck/2ok(~,zl ). (16) 

k=O 

Substituting this series into the partial differential equations (11), letting M = 0, and equating 
like powers of $ results in a sequence of problems for the Og(~,~), k = O, 1,2, . . . ,  

k 
Ok~ + Ok~- - -~Og=--Ok_ l~  onF,  

r/ k 
Okrlcl + Ok~ + 50krl  -- -2 Ok ----" 0 in ~2, (17) 

! I (k 0) 
0k(~m) = o, 0,(~,oo) = o, 0k(o,o) = . i  

1 o (k>O) 
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Transient two-dimensional diffusion 269 

The leading term 00 (for which the side-loss term subscripted k - 1 is omitted) is of course 
the early self-similar solution. 

A solution to the sequence of PDE's is generally obtainable by the numerical procedure of 
Appendix A, and in the present linear example it is also possible to derive the analytical expan- 
sion 

0 = erfc (g-~-~) - 1 X/~ erfc ( ~ )  

+q~ t - ~  e x p ( -  (~ +r/)2 ) - ~ erfc ( - ~ ) t  + (18) . . . 7  

which can be easily checked by direct substitution into the perturbation equations (17). This 
analytical result is obtainable by writing out Whipple's solution [1] in the Laplace transform 
variable s, setting M = 0, expanding for t << 1 (s >> 1), taking the inverse Laplace transform, 
and again expanding for small t (¢ << 1). As a check on the numerical procedure of the Appen- 
dix, consider the expansion for the temperature gradient at the origin 

K 
0~(0,0,~)= Z ~k/20k~(0,0 ) 

k=O 

in which the coefficients 0k~ are exactly ( - 1 / ~ ,  -1 /2 ,  1 / 4 ~ ,  -1/16,  5/96x/~" . . . .  ) as com- 
pared with the very adequate numerical results (- .567, - .500,  .140, - .062,  .029). 

Since the actual temperature gradient, 0 x = O ~ / x ~ ,  decreases with time, the perturbation 
exerts an offsetting influence which tends to maintain a high heat flux into F. The same trend 
is depicted by the progressive foreshortening of the temperature profiles in Figure 3. As the 
penetration depth grows, the increasing lateral losses result in a declining rate of advance. Even- 
tually, the loss mechanism becomes dominant and the energy storage on F becomes negligible, 
as described by the intermediate limit of the next paragraph. 

] . [ ~ 1  , w I ' i , I v , , 

.8 

L .6 ~ = 0 . 0  
~, 0.1 

0.2 
.4 0.5 

.2 

0. 
0.0 1.0 2.0 ~.0 

Figure 3. Potential profiles along F at various early-intermediate times 4~ = Rt*. 
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5. Intermediate self-similar a s y m p t o t e  

Intermediate times are sufficiently late that the energy storage on I" has already become insigni- 
ficant, but sufficiently early that the A-layer diffusion still remains negligible. Thus the inter- 
mediate plateau is both the late-time asymptote of the early-intermediate expansion and the 
early-time asymptote of the intermediate-late expansion. 

A similarity transformation which captures the intermediate behavior is 

(6 ,rl ,r) = T*(x *,y *, t*), 

x* R¼ y.* r =MaRt *, 
(19) 

in which ~ is the same as before, and r =M2¢. The longitudinal coordinate 6 is now scaled both 
by R and by ,~'~, instead of x /~ ,  emphasizing the fact that side-loss curtails the advance of the 
salient on F. In terms of these new variables, the PDE's (6) become 

M 6  ~88 +~On=MVrrt~r x/ff 4 ~ onP ,  

8 
(20) 

subject to the same boundary conditions as before. 
The intermediate asymptotic solution fro (~,r/) satisfies the equations in the intermediate limit 

M2 << r << 1. 

Within this window of time, the problem becomes 

~ +~O n = 0  inP,  

~9 6 + -~ fin + ~ if6 = 0 in ~2, 

¢ ( 0 , 0 )  = 1, ~0(6 ,~)  = 0,  ~0(~,r/) = 0.  

(21) 

The interior, which remains parabolic, still cannot match with unity temperature on A. In fact, 
ffo(0,r/) is identical to 0o (0,7/). The intermediate solution of Figure 4 has the analytical repre- 
sentation 

t0(6,r/)= 1 1~_ £oo exp (--6 X/~ 4~X/~q- - q )  sin (6 --~ 4Vr~ + ~vrq )dqv (22) 

which is checkable by substitution and is derivable by taking the limits M ~ 0 and s >> Mz 2 
(since s >> 1 when t >> 1, and z -+ oo when x ~ oo) before taking the inverse Laplace Trans- 
form of Whipple's solution [ 1 ]. Alternatively, and in more general circumstances, a solution is 
obtainable by the numerical method of Appendix A which gives for ~O~ (0,0) the result - .814 
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Composite potential profiles along I ~ at various intermediate-late times ~ = M ~Rt ~. 

as compared with the exact result of -F(1/4)/lrvr2 ~ - .816.  As seen in Figure 4, the interme- 
diate solution ffo(~,r/) has nearly linear isotherms reminiscent o f  0o. The temperature profile 

along F, as shown in Figure 5, has more curvature than 00 and a longer tail, a trend which was 

evident in the early expansion. 

Returning to the full problem as stated in intermediate variables (20), it is seen that  the 

terms involving M (which appear on F)  can be neglected provided that  
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M 2 << r << 1 .  (23) 
M = 

Under this rather weak restriction the post-intermediate behavior will be expressed as ff(6,r/) 
with r as the only parameter. 

6. Intermediate-late expansion 

During the intermediate period the salient disturbance on P only advances like ~/t'-while the 
boundary-layer thickness along A continues to grow like x~. So, despite a narrow beginning, 
the A-layer eventually overtakes the salient. The merging process is illustrated by the interme- 
diate-late expansion, a coordinate perturbation in the late time variable r.  Singular behavior is 
accommodated by ~"stretching of the longitudinal coordinate within the A-layer. 

The outer, straight-forward expansion which is chosen as 

~(8,n,r)  = Z r 1'14 ¢k(8,n) 
k=O 

must satisfy the system (20) in the intermediate-late limit M 2 < r < M  -2 

~ + ~ = 0  onP,  

8 
~nn +-~a + ~ n  =r~r-x /~8~ inl2. 

Thus, there results the following sequence of problems for the ffk(5,r/), k > 0, 

(24) 

(25) 

ffk6 ~ + ~k n = 0 on F, 

8 7/ k 
ing2, 

(26) 

in which the ~6 ~ is included only when k ~> 2. Since each pair resembles the equations for 
~o(8,~7), the same numerics are applicable. All of the ~k vanish as 8 o ¢¢ and as rl o oo. Like 
fro, each ~k must satisfy an ODE along 6 = 0, so each is completely determined once ~k(0,0) 
has been specified. Matching with the inner region provides this sequence of constants. 

To satisfy the inner boundary condition, T*(0,7/,r) = 1, it is necessary that Txx be retained 
in the zeroth order inner problem, so the appropriate length scaling of the boundary layer 

seems to be 

a = a/~Vg. (27) 

Denoting the inner solution as @(A,rl,r), the boundary-layer equations are 

,I, a a  + vrr q'n = 0 onPa,  

A 
@nn +~I'aa + ~ g ' a  + ~ ~kn =r~I'r in I2a, 

(28) 
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in which ~2zx and Fzx refer to the interior and the lower boundary of the inner region. Attempt- 

ing a series approximation of the form 

x~( A,17,T ) ~ ~_~ "l"k /4Xll k( A fl'l) (29) 
k = O  

leads to the following sequence of problems for the q~k, k t> 0 

~kAA + ~k--2~ = 0 on Fa,  (30) 

A rl k 
'I'k,1 n + ~I'k/,A + ~ q ' k a  + ~ ° k  n - ~ I ' k  =0 in ~2a, (31) 

in which the lagging q~n of the first equation is included only for k ~> 2. 
The elliptic boundary-layer equations are solved by a standard, second-order, alternating- 

direction-implicit, iterative method [9]. The boundary condition on A is satisfied by letting 

• o(0,rl) = 1; xPk(0,0 ) = 0, k > 0, (32) 

At large rl the presence of P cannot be felt, requiring that q~ be a function of A alone 

~xp~ 
~ (A,oo,r) = 0. (33) 

The boundary values on F,~ are calculated by double integration of (30). Matching with the 
outer solution determines the asymptotic behavior of each xP k and provides values of the A- 
derivative of q~k at (0,0). 

The matching procedure, as detailed in the Appendix, is based on the principle that [8] 

lim xI,(A,r/,r)= lim ~(6,r/,r). (34) 
~-~oo 6-~0 

Following the customary steps, the outer expansion • of the inner solution is equated to the .<._ 

inner expansion ~ of the outer solution. Successive applications of the limit then yield a general 
recursive form of the matching conditions. 

The zeroth approximation of Figure 4 depicts a pair of boundary layers running outward 
along the coordinate axes, away from the corner region where the matching takes place. The 
zeroth outer solution fro is identical to the intermediate asymptotic described previously. The 
zeroth inner solution ~o has unity potential all along A, matches ~bo(0,rl) = erfc(r//2) at large 
A, and represents the one-dimensional far field ~o(A) = erfc(A/2) at large r/. 

The composite expansion is constructed by adding together the inner and outer expansions 
and subtracting the common part [8]. The five-term results for selected times are displayed in 
Figures 5, 6, and 7. When r is small the inner solution ~(6/~ , r l , r )  is influential only at small 
6, but with increasing r the A-layer progressively invades the outer region, straightening out the 
isopotentials. As r -+ 1, A and 8 are identical and the entire field becomes dominated by the 
one-dimensional solution which was initially valid only as r / ~  ~o. It is surprising that this dra- 
matic change of character is captured by an expansion which contains only three nondegenerate 
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terms. Of course, convergence is not as good beyond ¢ = 1, as illustrated by the alternating 
series for the gradient at the origin 

a_.~_~ (0 ,0 )= - .81 r  1/~ + .70¢ 1A - 43¢ 3/4 + .28r - .32rs /4  (35) 
~A " " 

The limited domain of the intermediate expansion is however augmented by a later, and final, 
asymptotic solution. The nearly vertical isopotentials of the ¢ = 1 composite suggest that the 
inner variable A is the appropriate coordinate for later times. 

7. Late self-similar asymptote 

The late-time solution is conveniently described as ~(A,~,(b) which must satisfy the following 
system (in which q~ = l / r )  

~,n + ~1/2 I~  ' AA 1 azx +M~'~ , , ,  +~q-'~, =0  o n r ,  

A^ 7 ^  
q'nn + ~ a a  + ~ ~oa + -~ ~n + ~ ' ~  = 0 in ~2, (36) 

~(O,r/,~) = 1, ~(oo,~,~) = 0. 

In the late-time limit ~ --> 0 0" -> oo) the solution is simply 

~o(A,~)-~(A,r~,0)  -- erfc ~ (37) 

which is identical with the large-r~ behavior in the A4ayer of the intermediate-late expansion 

'~'o(A,r~)-- lim 'I '(A,~,r)='~'o(A,~) (38) 

confirming the one-dimensional trend of the intermediate-late composite. 

8. Transitions 

Having constructed a sequence of three asymptotic solutions and some joining expansions, it 
is important to now examine the transition zones. Also, a comparison is made with the ana- 
lytical results of Whipple [ 1 ] which provide an 'exact' expression for the longitudinal gradient 
at the origin 

"21 M-~ t ( M - I - 1 )  3/22x/~ ~ ( ° - 1 )  t - ~  0~(0,0,¢)= 1 + ~ 03/2 erfc do (39) 
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under Whipple's restriction that R = M. This integral is evaluated numerically and displayed as 

a function of ~b for M ~ 0 (i.e., M = 10-4). The present asymptotic analysis is in good agree- 

ment with this exact solution. 
The early-intermediate expansion is presented in Figure 8 where 0~ is plotted against the 

early time variable ~b. The leading term of the expansion is the early asymptote which lies hori- 
zontal at unity ordinate. Successive partial sums 0 r envelope the exact solution and as more 
terms are added the domain of convergence extends forward to roughly ~ = 1. As the exact 

solution passes upward onto the intermediate asymptote ~o, there is only a moderate gap be- 
tween the early-intermediate expansion and ~o. 

The intermediate-late expansion is presented in Figure 9 where 0t~ is plotted against the late 
time variable 7. The upper asymptote is horizontal at unity ordinate. The leading term of the 
expansion is the intermediate asymptote ~o. Successive partial sums again envelope the exact 

solution and convergence is good to roughly r = 1. 

9. Application to fluid flow in porous media 

Consider the transient two-dimensional problem of laminar fluid flow along a fracture or a 
high-permeability sheet F which extends from the boundary into the interior of a porous half- 

space ~2. The prototype problem describes the transient pressure response P(x ,y , t )  under a 
step change in boundary pressure. It is only necessary to reinterpret the physical properties: 
thermal conductivity k is replaced by the fluid conductance ~p/la in which ~ is permeability 

and ju is viscosity; thermal capacitance pc is replaced by fluid capacitance eoe in which e is 
porosity, p is fluid density, and e is fluid compressibility. If F is a fracture, instead of a high- 
permeability sheet, its equivalent properties are ~ = b 2 [3 and e = 1, in accordance with the Hele- 
Shaw analogy. Even when the medium is rather permeable (e.g., sandstone with K ~ 1 Darcy = 
10 -s cm 2) and the fracture is rather narrow (e.g., b ,  10 -3 cm), the fracture is still a dominant 
path (M ",~ 10-1 ) and the asymptotic analysis is meaningful. 

The prototype problem is linear provided that the variations in p(P) and e(P) are moderate, 
as in liquid-flow or in gas-flow under moderate pressure ratio. The quoted results then provide 
simple analytic estimates of engineering parameters: penetration depth, fluid flow rate, and the 
relative importance of transverse losses. This rudimentary example is, moreover, representative 
of a broad class of problems which can be addressed by the same asymptotic arguments. 

The primary significance of  the present discussion lies in its extension to the more complex 
nonlinear problems, such as those which arise in the geologic fracture-flow applications. Some 
examples are: 

(1) turbulent gas or liquid flow on F coupled with Darcy-flow in ~ ,  
(2) nonlinear (variable property) flow along P and in f2, 
(3) multiphase fluid flow along F and into ~ ,  

(4) single- or multi-phase flow along F coupled with conduction energy transfer into im- 
permeable f2, 

(5) gas-, liquid-, or steam-driven fracture propogation coupled with mass and/or energy 
loss into impermeable or permeable ~,  

(6) transient flow of reactants and products along F coupled with in-situ combustion of 
permeable or impermeable ~2. 
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In all such circumstances there is diffusive and/or advective transport of mass and/or energy, 
both longitudinally along I" and transversely in f2. 

The considered example demonstrates several generic features of I'/~2 coupling in diffusion/ 
advection systems. 

(1) There are three principal time domains: early uncoupled, intermediate loss-or couple- 
dominated, late one-dimensional. The first two are of greatest interest. 

(2) Throughout early and intermediate times it is permissible to neglect longitudinal dif- 
fusion in ~2 and to seek an outer solution in the manner discussed. As a corollary to 
this, it matters not whether P is perpendicular to ~ .  In fact, I" may be generally in- 
terpreted as any smooth curve in the xy-plane, as in the generalized boundary-layer 
theory of viscous flow over planar bodies. Further, it matters not what type of data is 
given onA(i.e., ~ excluding the intersection with P), since this information is impor- 
tant only at late times. 

(3) Self-similar asymptotics can be identified for many diffusion/advection systems, like 
those enumerated above. The asymptotic analyses have several advantages: reduction 
in the number of independent variables, simplification of the numerical computations, 
encorporation of property and parameter data in the scaling of coordinates. 

These observations have been developed and verified in a simple, checkable context. 

10. Summary 

In the model problem of transient surface diffusion (Figure 1) the salient of the disturbance 
advances along P with growth rate L (t). Within ~ ,  gradients are confined to the boundary- 
layer regions along P and A. The evolution of the potential field T * ( x * , y * , t * ; R , M )  is de- 
scribed by a sequence of three asymptotic solutions, complemented by transition expansions. 
(a) At early times the diffusivity on P controls the advance of the salient (Figure 2). 

t T*=Oo v r ~ - ,  

R t*  ~ O 

L * ~  

(b) In the early-intermediate transition, transverse loss from P to ~ retards the salient (Figure 3), 

T* = O , ~ , R t*  O <~ R t*  <~ l 

(c) At intermediate times the transverse loss controls the advance of the salient (Figure 4). 

T*= ~bo X* 

L * ~ ¢ / ~  

1 < < R t *  < <  
1 

M 2 
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(d) In the intermediate-late transition, longitudinal diffusion in comer of g2(A4ayer) curtails 

the transverse loss from P (Figure 5). 

T* = ~ x *  Y M 2 R t  * ' x/r~ ' 

T*= ~P ' ~ f ~  ' M Z R t  * 

1 
1 <<Rt*  ~< 

M 2 

(e) At late times the diffusivity in ~2 controls the diffusion front which is now globally one- 

dimensional (longitudinal) with F no longer in evidence. 

(x" 1 
T*= (~° ~ M t *  

L * ~ X/Mt;* 

R t *  ~oo  

The asymptotic analysis requires only that M be small. It is advantageous because each of the 

self-similar asymptotics (0 0, ~o, '~o) is a universal function of only two independent variables 
and because each is easily computed and readily applied. If the transition behaviour is desired, 

one can calculate T* as a universal function of  three independent variables, either by expansion 

methods as demonstrated here or by direct numerical solution of the transformed equations. 

The same methodology should afford even greater advantage in more complex nonlinear prob- 
lems of the same class. 
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Appendix A Numerical solution procedures 

The finite-difference solution procedure for the parabolic outer problem is essentially the same 

throughout all time periods: early, early-intermediate, intermediate, and intermediate4ate. 
In the early and early-intermediate periods the PDE's (17) are typical of a regular perturba- 

tion problem. The (k - 1) th term of the ~2-solution is used to calculate the side-loss, or forcing 
function, for the k th P-solution which then serves as a boundary condition, or forcing function, 
for the k TM ~2-solution. 

The numerical solution procedure relies upon standard finite-difference methods. For each 
k, O k (~, 0) is first determined by solving the boundary value problem on P, differentiating 
Ok- 1 to evaluate the forcing function. The interior of the field is then constructed by marching 
integration [9] of the parabolic partial differential equation, stepping inward toward the origin 
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in the time-like negative-~ direction, using three-point backward differences for 0~ and second. 
order centered differences for O n and 0rm. The sweep is initiated by letting 0 (~, r/) = 0 ~ (~, r~) = 0 
for all 7? along a remote line, ~ = ~. The values just computed for O k (~, 0) provide the needed 
data on F, and it is also enforced that 0 (~, f/) = 0 for a large but finite f/. On the front face A 
where ~ = 0, the PDE degenerates to a linear homogeneous ODE which (for k > 0) has homo- 
geneous boundary values, so it must be true that 0~(0, 7?) = 0 (for k > 0). This observation does 
not impose an untenable boundary condition on the parabolic interior, but is instead the conse- 
quence of a type-change as ~ -~ 0. 

In the intermediate and intermediate-late periods the equations (2 i) and (26)are still para- 
bolic in the interior, but the side-loss term fin is now dominant on P indicating a stronger 

coupling between the boundary and the interior. This necessitates successive iterations of the 
numerical procedure described previously, using most-recent values from the first longitudinal 
line within ~2 when solving on P,  and then using most-recent values from P as boundary data 
when sweeping through I2. 

The reported calculations use a 40 x 40 grid to cover a 10 unit x 10 unit corner of the first 

quadrant, using variable (power law) spacing such that the grid lines nearest the origin lie 0.1 

units apart. The accuracy of  the calculations is checked by comparison with the exact solutions 
(18) and (22) stated in the text. 

Appendix B Matching procedure for intermediate-late expansion 

The formalism of matching (Cole, [8]) enforces the agreement between ¢ 03, r/, r) and ~ 03, r/, z), 

for all r/, in the limit as r -~ 0 with/3 = ~]e(r) held fixed within an overlap domain Tll 4 < e < 1. 

This limit process leads to the familiar matching condition 

lim ~(A,~7, T)=lim ff(~,r/,r) (A1) 
A - , o .  ~ 0  

which again must be satisfied for all r/when r is small. Now suppose that each ~k has the usual 
algebraic expansion as A ~ oo 

.-+ 

~k (A, 7?) ---- lim q~k = ~ An Fk,n (rl) + TST (A2) 
A--,  oo n = O  

and that each ffk has a regular expansion along 5 = 0 

<--- 

D'I f / q l  ffk (6, r/) = lim ~kg ~ ~ k 07). (A3) 
0 ~ 6  m = 0  

Then by writing out the double summations for ~(A,  r~, r) and ff (A t  114, 7?, r), equating like 

powers of  A, and successively applying the limit r ~ 0, it is found that the matching condition 
is satisfied to the K t" order in r if for each k ~<K 

1 ~n ~k-n 
n - -  (0, n) (A4) Fk.. (7) =f;_.  (7)-- ,t 

for n = 0,1 ..... k. Thus, ~"k is at most k TM order in A as A ~ ~ ; and for every k, the inner- 
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functions Fk, n are each identical with a derivative of a previous outer function, except for Fk, o 
which is identical with fk" ~ e- 

The overlap representation, xp or ~,  (usually called the common part) is completely de- 
scribed by the functions fk07), since the dependence on r and on A (in the overlap domain) is 
presumed. Taking the n th longitudinal derivative of the k th outer problem and letting 8 ~ 0 gives 

a boundary value problem for ~k (r~) 

" d.fT  k - n  d f k  77 
_ _ +  f .  = _ f . + 2  dr/z 2 dr/ 2 k g-  2 ' 

~k (0, 0), 

-7- (o,o), 

1 df~k -2  
- -  (0), 

n dr/ 

fT, (0) = 

n = 0  

n = l  

n~>2 

(A5) 

-~k ('~) = 0, all n 

in which f~_+ 22 is included only when k 1> 2. The same ODE's, but not the boundary conditions, 
can alternatively be generated by substituting the outer expansion of the inner solution ~g into 

the inner PDE to obtain ODE's for the Fk,n which are then identified with f~_ 2 by virtue of the 
matching relation. It is further noted that xP k (h, 77) always satisfy the PDE throughout ~2zx so, 
using superposition, xP k is subtracted from the k th inner problem leaving a numerical evalua- 
tion of only the 'defect' portion of ~k which conveniently vanishes as A ~ oo. Another impor- 

tant point, from a numerical standpoint, is that the overlap ODE's afford a relatively reliable 
means of obtaining the high-order derivatives of ~. Similarly the ffk-2aa (6, ~7) which lag on 

the outside are calculated by numerically solving the PDE's and BC's which result from taking 
the second longitudinal derivative of the (k-2)  TM outer problem. 

Although the common part satisfies the PDE's in ~2ix , in ~ ,  and on P, it remains to com- 
plete the inner-outer linkage by enforcing the boundary condition on l?a. Integrating twice 
along PA gives 

zx zx aq~k___.___ 2 
~k(A'O)=XPk(O'O)+CkA- f f arl dAdA (A6) 

0 0 

in which C k is a constant to be determined. Equating the outer fimit of this expression with the 

outer expansion of ~g_  2, replacing all resulting Fk, n with the corresponding/~k-n, and en- 
forcing the recursive boundary condition on f~ for n />  2 leads to a pair of compatibility con- 
ditions 

~X~tk ~/k-- 1 
(0, 0 ) -  - -  (0, O) + Qk_2(~o), 

aA at/ 

fig (0, 0) = ~ g  (0, 0) + Qk- 2 (,,o), 

(A7) 
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in which negative subscripts are excluded and the Q's represent integrals of an earlier defect 

function 

f0 L-g J 
A 

Q"k(A) : - f [Qk(A) - Q k ( ~ ) ]  d A .  
o 

(AS) 

The problem statement is now complete. Given data from the two previous terms and a choice 

of ~Pk (0, 0), one or zero, the k TM inner and outer problems become determinate. 
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